Noncommutative spectral geometry: a short review
نویسندگان
چکیده
منابع مشابه
A Short Survey of Noncommutative Geometry
We give a survey of selected topics in noncommutative geometry, with some emphasis on those directly related to physics, including our recent work with Dirk Kreimer on renormalization and the Riemann-Hilbert problem. We discuss at length two issues. The first is the relevance of the paradigm of geometric space, based on spectral considerations, which is central in the theory. As a simple illust...
متن کاملNoncommutative spectral geometry of Riemannian foliations
According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...
متن کاملSpectral noncommutative geometry and quantization: a simple example
The idea that the geometric structure of physical spacetime could be noncommutative exists in different versions. In some of versions, the noncommutativity of geometry is viewed as a direct effect of quantum mechanics, which disappears in the limit in which we consider processes involving actions much larger than the Planck constant [1]. In the noncommutative geometry approach of Connes et. al....
متن کاملReview of the Phenomenology of Noncommutative Geometry ∗
We present a pedagogical review of particle physics models that are based on the noncom-mutativity of space-time, [ x µ , x ν ] = iθ µν , with specific attention to the phenomenology these models predict in particle experiments either in existence or under development. We summarize results obtained for high energy scattering such as would occur for example in a future e + e − linear collider wi...
متن کاملThe Spectral Action Principle in Noncommutative Geometry and the Superstring
A supersymmetric theory in two-dimensions has enough data to define a noncommutative space thus making it possible to use all tools of noncommutative geometry. In particular, we apply this to the N = 1 supersymmetric non-linear sigma model and derive an expression for the generalized loop space Dirac operator, in presence of a general background, using canonical quantization. The spectral actio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2013
ISSN: 1742-6596
DOI: 10.1088/1742-6596/442/1/012015